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Abstract. This paper proposes a new efficient method for line detection based on11

known incremental methods of searching for an approximate globally optimal partition12

of a set of data points A and on the DIRECT algorithm for global optimization. The pro-13

posed method was modified for solving the problem of detecting crop rows in agricultural14

production. This modification can recognize crop rows with a high accuracy, and the15

corresponding CPU-time is very acceptable. The method has been tested and compared16

on synthetic data sets with the method based on Hough transformation. The efficiency of17

this method might be significantly improved in direct application. The proposed method18

has been used in this paper for the case of two or three crop rows. The generalization to19

several crop rows is also given in the paper, but was not implemented. Also, the method20

could be expanded in case when the number of crop rows is not known in advance.21

Key words: line detection; crop rows detection; clustering; incremental method;22

global optimization; DIRECT.23

1 Introduction24

Line segment or line detection problem has many applications. Let us mention one that25

has special importance in agricultural production. The processes of planting, fertilization,26

plant protection and finally harvesting are the most important processes in agriculture27

that can be automated. During any of the mentioned processes humans must handle a28

machine (a tractor, for example) with a high degree of precision and repeat the same29

activity for several hours, which can be very exhausting. With acceptably accurate crop30

rows detection it is possible to automate machine work which is usually very exhausting31

and sometimes too demanding for humans.32

The mentioned automation processes of machines in agricultural production have been33

subjects of many papers. One of the first approaches to solving this problem is a Hough34

1Corresponding author: Rudolf Scitovski, e-mail: scitowsk@mathos.hr, telephone number: ++385-
31-224-800, fax number: ++385-31-224-801
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transform-based method. (Marchant, 1996) proposed a method based on Hough transfor-1

mation, which uses the information about the number of crop rows making this technique2

very tolerant to problems like missing plants and weeds. The method has been tested on3

cauliflowers, sugar beet and widely spaced double rows of wheat. (Bakker et al., 2008)4

transformed captured color images to gray-scale images which have good contrast between5

a plant and the background. Sugar beet rows have been detected using gray-scale Hough6

transformation. (Ji and Qi, 2011) proposed a center line crop rows detection method using7

gradient-based random Hough transformation. The method has been tested on sparse,8

general and intensive plant distribution and the results have shown that the proposed9

method is faster and more accurate than general Hough transform-based algorithms. An10

adaptation of Hough transformation applied to soil and chicory rows detection was pro-11

posed by (Leemans and Destain, 2006). They used neural networks for plants detection12

and adapted Hough transformation for rows detection. In this adaptation, the Hough13

transformation method uses theoretical crop row position and direction for reference in14

Hough plane. Deviation of detected crop rows from the reference was a few centime-15

ters and authors found this compatible with the application. (Rovira-Mas et al., 2005)16

presented a combination of Hough transformation and connectivity analysis for finding a17

pathway between crop rows.18

Other possibilities for crop rows detection are filter-based methods. The method for19

hoe guidance based on the extended Kalman filter was proposed by (Tillett and Hague,20

1999). The prediction of rows position has been calculated according to the previous21

state and inputs using the Kalman filter and corrected by least squares incorporation22

of new observations. This method is very sensitive to the presence of shadows. (Olsen,23

1995) proposed a method for detecting centre position of crop rows using an infrared24

filter based on summation of pixel gray values. The method is not sensitive to shad-25

ows while lateral winds and lateral illumination cause offset in the calculated rows posi-26

tion. (Hague and Tillett, 2001) proposed a combination of a (Olsen, 1995) method and a27

Kalman filter. The method is applicable to images with presence of shadows unlike the28

method presented earlier (Tillett and Hague, 1999).29

There are several other approaches for crop rows detection like methods based on30

vanishing points or linear regression. (Pla et al., 1997) presented a method for guiding a31

crop rows navigation vehicle based on a scene structure building using a vanishing point.32

Feature extraction was done by a method based on region skeletons. The method does33

not work well when an image is captured at the end of the field where the remaining34

length of the rows is short. The method for detecting crop rows without image seg-35

mentation was proposed by (Søgaard and Olsen, 2003). Computation of line parameters36

was done by weighted linear regression and the method has been tested on real images.37

(Montalvo et al., 2012) proposed a new method for crop rows detection in maize fields38

with a high presence of weeds. The method is based on three steps including image seg-39

mentation, double thresholding and linear regression. The Excess Green vegetation index40
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has been used for transforming captured RGB images to gray images and double Otsu1

thresholding has been applied for separating weeds and crops. For calculating line param-2

eters associated to the crop rows, linear regression based on total least squares has been3

used. The main finding of this paper is double thresholding used for separating weeds4

and crops. The method has been favorably compared to a classical Hough approach mea-5

suring effectiveness and processing time. A new method for crop rows detection in maize6

fields based on linear regression and Theil-Sen estimator was proposed in (Guerrero et al.,7

2013). Crops and weeds are detected by using the Otsu thresholding method and the de-8

tection of crop rows is based on mapping the expected crop lines onto image and applying9

the Theil-Sen estimator to adjust them to the real ones.10

In our paper, we first consider the problem of recognizing several lines in general11

position (Section 2) and propose a new cluster-based incremental method of searching for12

approximate lines (Subsection 2.3.2). After that, in Section 3 we propose a new method13

for crop rows detection as a combination of total least squares linear regression and a14

modification of the previously mentioned center-based incremental method. In Section 4,15

the proposed methods are tested and compared with the Hough transform-based algorithm16

on synthetic data simulating various real situations.17

2 Line detection problem18

Let us notice first that, without loss of generality, we can suppose that the arbitrary line19

in the plane is given by20

ax + by − c = 0, a2 + b2 = 1, c ≥ 0. (1)21

Let us suppose that the data point set A is given whose elements derive from previously22

unknown lines. Thereby, the number of lines can, but need not be, known in advance.23

On the basis of the given data point set A, the lines could be reconstructed.24

2.1 Data point set construction25

The line detection problem shall first be considered on the data point set deriving from26

lines in general position. Let I = {1, . . . , m} be the set of indices and27

A = {Ti = (xi, yi) ∈ R2 : i ∈ I} ⊂ R (2)28

the data point set contained in the rectangle R = [xmin, xmax] × [ymin, ymax]. The data29

point set A is generated by k lines30

pj : ajx + bjy − cj = 0, a2
j + b2

j = 1, cj ≥ 0, j ∈ J = {1, . . . , k}, (3)31
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in the following way. First, we choose interval [ymin, ymax] ⊂ R and for each j ∈ J we1

define mj ≥ 3 equidistant spaced numbers η1, . . . , ηmj
∈ [ymin, ymax] and the set (see2

Fig.1)3

Aj = {(ξ(j)
i , η

(j)
i ) + ϵ

(j)
i (aj, bj) : ξ

(j)
i = 1

aj
(cj − bjη

(j)
i ), ϵ

(j)
i ∼ N (0, σ2), i = 1, . . . , mj}.4
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(j)
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ϵ
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i bj

ϵ
(j)
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(j)
i bj)
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Figure 1: Data generating

The data point set A =
k∪

j=1
Aj consists of m = ∑k

j=1 mj data points Ti = (xi, yi) ∈5

[xmin, xmax] × [ymin, ymax], where xmin = min
i,j

{ξ
(j)
i + ϵ

(j)
i aj}, xmax = max

i,j
{ξ

(j)
i + ϵ

(j)
i aj}.6

On the basis of the given data point set A, lines p1, . . . , pk should be reconstructed.7

2.2 Hough transformation method for line detection8

Line detection by the Hough transform-based method (Duda and Hart, 1972; Leemans and Destain,9

2006) is achieved by searching for the maximum in the Hough plane (accumulator), which10

represents the transformation of the input image. Each point T = (ξ, η) ∈ A ⊂ R2 in11

the Hough plane is represented by all possible lines given in Hesse normal form passing12

through the point T , i.e. the set13

{(α, δ) ∈ R2 : ξ cos α + η sin α − δ = 0}.14

In this way, some line p in the plane R2 is represented by a pair (α, δ) in the Hough15

plane, and some point T ∈ R2 is represented by the sequence of points in the Hough16

plane. Points that in the original image lie on a line increase the intensity of the point17

that represents that line in the Hough plane. The algorithm for line reconstruction, which18

is based on recognizing the most intensive points in the Hough plane will be hereinafter19

simply referred to as HTA.20

2.3 Cluster-based line detection21

Line detection problem can also be considered (Bagirov et al., 2013; Späth, 1983; Yin,22

1998) as a data clustering problem of the set A in k nonempty disjoint subsets (clusters)23
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π1, . . . , πk such that1

k∪
i=1

πi = A, πr ∩ πs = ∅, r ̸= s, |πj| ≥ 1, j = 1, . . . , k. (4)2

Such partition will be denoted by Π, and the set of all partitions of the set A consisting of3

k clusters π1, . . . , πk will be denoted by P(A; m, k). Clustering or grouping a data set into4

conceptually meaningful clusters is a well-studied problem in recent literature, and it has5

practical importance in a wide variety of applications such as medicine, biology, pattern6

recognition, facility location problem, text classification, information retrieval, earthquake7

investigation, understanding the Earth’s climate, psychology, ranking of municipalities for8

financial support, business, etc. (Kogan, 2007; Liao et al., 2012; Mostafa, 2013; Pintér,9

1996; Reyes et al., 2013; Sabo et al., 2011, 2013; Scitovski and Scitovski, 2013).10

If we introduce the distance from the point T = (ξ, η) ∈ A to a line pj(aj, bj, cj) given11

by (1) as orthogonal squared distance (Chernov, 2010; Nievergelt, 1994)12

d(pj(aj, bj, cj), T ) = (ajξ + bjη − cj)2, (5)13

then to each cluster πj ∈ Π we can associate its center-line p̂j(âj, b̂j, ĉj) where14

(âj, b̂j, ĉj) = argmin
aj ,bj ,cj∈R

∑
T ∈πj

d(pj(aj, bj, cj), T ). (6)15

Note that, in this way, the center-line p̂j(âj, b̂j, ĉj) of the cluster πj is defined as the best16

total least squares (TLS) line (Chernov, 2010; Grbić et al., 2013b; Montalvo et al., 2012;17

Nievergelt, 1994; Scitovski et al., 1998).18

After that, by introducing the objective function F : P(A; m, k) → R+, we can define19

the quality of a partition and search for the globally optimal k-partition by solving the20

following global optimization problem (GOP):21

argmin
Π∈P(A;m,k)

F(Π), F(Π) =
k∑

j=1

∑
T ∈πj

d(p̂j(âj, b̂j, ĉj), T ), (7)22

where the center-line p̂j is determined by (6).23

Conversely, for a given set of center-lines p1, . . . , pk, by applying the minimal distance24

principle, we can define the partition Π = {π(p1), . . . , π(pk)} of the set A which consists25

of the clusters:26

π(pj) = {T ∈ A : d(pj, T ) ≤ d(ps, T ), ∀s = 1, . . . , k}, j = 1, . . . , k, (8)27

where one has to take into account that every point of the set A occurs in one and only28

one cluster. Therefore, the problem of finding an optimal partition of the set A can be29

reduced to the following GOP30

argmin
a,b,c∈Rk

F (a, b, c), F (a, b, c) =
∑
T ∈A

min
1≤s≤k

d(ps(as, bs, cs), T ), (9)31
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where F : R3×k → R+, and a = (a1, . . . , ak), b = (b1, . . . , bk), c = (c1, . . . , ck). The solution1

of (7) and (9) coincides. Namely, it is easy to verify the following equalities2

F (a⋆, b⋆, c⋆) = ∑
T ∈A

min
1≤s≤k

d(p⋆
s, T ) =

k∑
j=1

∑
T ∈π(p⋆

j )
min

1≤s≤k
d(p⋆

s, T )

=
k∑

j=1

∑
T ∈π(p⋆

j )
d(p⋆

j , T ) = F(Π⋆).
(10)3

The objective function F can have a large number of independent variables. It does4

not have to be either convex or differentiable, but it is a Lipschitz continuous function5

(Grbić et al., 2013a; Pintér, 1996; Sabo et al., 2013). The objective function F can also6

be considered as a symmetric function Φ: Rk×3 → R+, Φ(ζ1, . . . , ζk) := F (a, b, c), where7

ζj = (aj, bj, cj). Because of the symmetry property, the function Φ has at least k! local8

and global minimizers. Therefore, this becomes a complex GOP for a symmetric Lipschitz9

continuous function.10

The following example gives a solution to the problem (9) in the simplest case k = 1.11

Example 1. For the given data point set A = {Ti = (xi, yi) ∈ R2 : i ∈ I} ⊂ R, R =12

[xmin, xmax] × [ymin, ymax], by solving GOP (6) the corresponding TLS line should be de-13

termined. The best TLS line passes through the centroid of the data (xc, yc), xc = 1
m

m∑
i=1

xi,14

yc = 1
m

m∑
i=1

yi and it can be determined (Chernov, 2010; Nievergelt, 1994) by the eigenvector15

which belongs to a smaller eigenvalue of the matrix BT B, where16

B =


x1 − xc y1 − yc

... ...
xm − xc ym − yc

 .17

We will mention several known methods of searching for a globally optimal partition18

or an approximate globally optimal partition, which can be adapted for solving GOP19

(9). Since our objective function F in (9) is a Lipschitz continuous function, there are20

numerous methods for its minimization (Evtushenko, 1985; Floudas and Gounaris, 2009;21

Neumaier, 2004; Pintér, 1996). One of the most popular algorithms for solving a GOP for22

a Lipschitz continuous function is the DIRECT (DIviding RECTangles) algorithm (Finkel,23

2003; Gablonsky, 2001; Jones et al., 1993). However, a large number of independent24

variables of the minimizing function F and a large number of its global minimizers make25

these methods insufficiently efficient.26

Instead of searching for the globally optimal partition, various simplifications are often27

proposed in the literature that would find a good partition. However, we usually do not28

know how close this partition is to the globally optimal one.29
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2.3.1 Adjustment of the k-means algorithm1

The most popular algorithm of searching for a locally optimal partition is a well-known2

k-means algorithm (see e.g. Kogan (2007); Liao et al. (2012); Scitovski and Sabo (2014);3

Späth (1983); Teboulle (2007)). If we have a good initial approximation, this algorithm4

can provide an acceptable solution. In case we do not have a good initial approximation,5

the algorithm should be restarted with various random initializations, as proposed by6

(Leisch, 2006). This algorithm was modified by Späth (1981) for solving GOP (9) (see7

Algorithm 1).8

Algorithm 1 (k-means algorithm)
1. Let A = {Ti = (xi, yi) : i = 1, . . . , m}, and p1, . . . , pk be mutually different lines;
2. By using the minimal distance principle (8) determine k disjoint unempty clus-

ters π1(p1), . . . , πk(pk);
3. For each cluster πj define center-line p̂j according to (6);
4. if {p̂1, . . . , p̂k} = {p1, . . . , pk} then
5. STOP
6. else
7. set pj := p̂j, j = 1, . . . , k and go to Step 2;

9

2.3.2 Adjustment of incremental methods10

The next possibility of searching for the solution of (9) is adjustment of incremental11

methods of searching for an approximate globally optimal partition (Likas et al., 2003;12

Bagirov and Ugon, 2005; Scitovski and Scitovski, 2013). This adjustment will be called13

Incremental Method for Line Detection (IMLD).14

First, suppose that the initial center-line p̂1(â1, b̂1, ĉ1) is chosen or that we have taken15

it to be the best TLS line (see Example 1). The next center-line p̂2(â2, b̂2, ĉ2) will be16

determined by solving the following GOP (see Scitovski and Scitovski (2013)):17

argmin
α,β,γ∈R

m∑
i=1

min{d(p̂1(â1, b̂1, ĉ1), Ti), d(p(α, β, γ), Ti)}, α2 + β2 = 1, γ ≥ 0,18

by using the DIRECT algorithm. After that, an approximate globally optimal partition19

Π⋆ = {π⋆
1(p⋆

1), π⋆
2(p⋆

2)} with center-lines p⋆
1, p⋆

2 will be obtained by using the k-means20

algorithm (Algorithm 1) where we take (p̂1, p̂2) as initial center-lines.21

Generally, if the first k−1 center-lines p̂1, . . . , p̂k−1 are known, the center-line p̂k(âk, b̂k, ĉk)22

will be determined by solving the following GOP23

argmin
α,β,γ∈R

m∑
i=1

min{δ̂i
k−1, d(p(α, β, γ), Ti)}, δ̂i

k−1 = min{d(p̂1, Ti), . . . , d(p̂k−1, Ti)}, (11)24
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by using the DIRECT algorithm. After that, an approximate globally optimal partition1

Π⋆ = {π⋆
1(p⋆

1), . . . , π⋆
k(p⋆

k)} with center-lines p⋆
1, . . . , p⋆

k will be obtained by using Algorithm 12

where we take (p̂1, . . . , p̂k) as initial center-lines.3

The following example illustrates HTA and the proposed IMLD for line detection.4

Example 2. On the basis of the given lines: p1 : 0.9x−0.4y +0.18 = 0, p2 : x+0.05y +5

0.6 = 0, p3 : 0.135x + y + 0.3 = 0, data point set A is constructed as in Section 2.1 (see6

Fig. 2a). It can be noticed that IMLD has recognized all three lines (see Fig. 2c), whereas7

HTA did not recognize line p3 (see Fig. 2b).8
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Figure 2: Line detection by HTA and IMLD

9

Remark 1. Note that the proposed IMLD method in each iteration searches for the next10

center-line as a globally optimal solution of the problem (11) by using DIRECT algorithm11

for global optimization. A similar method was proposed by Bagirov et al. (2013), but in12

each step of iterative process, the next center-line is searched for by solving corresponding13

locally optimal problem. Thereby, special attention was paid to the choice of good initial14

approximation. Since, in this case, the objective function may have several local and15

global minima, one cannot know in advance how near this solution is to the globally16

optimal one.17

3 An application: crop rows detection18

A special case of the line detection problem is a crop rows detecting problem, which has19

already been mentioned in the Introduction. Let us first formally define the problem.20

Suppose that the data point set A ⊂ R, R = [xmin, xmax] × [ymin, ymax] is generated as21

in Subsection 2.1 on the basis of lines p1, . . . , pk that intersect the interval [xmin, xmax]22

in equidistant knots ν1, . . . , νk ∈ [xmin, xmax] and have the common vanishing point B =23

(xB, yB), xmin ≤ xB ≤ xmax, yB > ymax (Leemans and Destain, 2006) (see e.g. Figures24

4a,5a,6a,7a). On the basis of the data point set A, lines p1, . . . , pk should be reconstructed.25
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As stated in the Introduction, there are many different approaches to solving this1

problem that can be found in literature. The problem can also be solved by using the2

IMLD method mentioned in Section 2.3.2. Numerical experiments carried out in Section 43

have shown that IMLD does not always offer the best results, and that additional mod-4

ifications need to be done. These modifications were described in algorithms mentioned5

below. The algorithms for solving the problem of detecting two and three crop rows will6

be mentioned specially. These procedures can easily be generalized for several crop rows.7

3.1 The algorithm for solving two crop rows detecting problem8

On the basis of the given data point set A, the following algorithm gives a satisfactory9

approximation of two globally optimal crop rows. The algorithm includes searching for a10

TLS line (three times) and the k-means algorithm (Algorithm 1).11

Algorithm 2 (approximate globally optimal 2-partition)
1. Let A = {Ti = (xi, yi) : i = 1, . . . , m};
2. For the data point set A determine the best TLS line p0;
3. By using line p0 divide the set A into two disjoint subsets such that A = A1∪A2;
4. for j = 1, 2 do
5. For the data point set Aj determine the best TLS line p̂j;
6. end for
7. Apply Algorithm 1 to data set A with initial center-lines p̂1, p̂2

12

3.2 The algorithm for solving three crop rows detecting problem13

On the basis of the given data point set A, the following algorithm gives a satisfactory14

approximation of three globally optimal crop rows. The algorithm includes searching for15

a TLS line, solving a GOP by using the DIRECT algorithm and Algorithm 1.16

Algorithm 3 (approximate globally optimal 3-partition)
1. Let A = {Ti = (xi, yi) : i = 1, . . . , m};
2. For the data point set A determine the best TLS line p̂0;
3. By using line p̂0 divide the set A into two disjoint subsets such that A = A1∪A2;
4. for j = 1, 2 do
5. By using the DIRECT method solve the following GOP

(ζ1, ζ2, ζ3) = argmin
α,β,γ∈R

∑
T ∈Aj

min{d(p̂0, T ), d(p(α, β, γ), T )};

6. and set p̂j := p(ζ1, ζ2, ζ3)
7. end for
8. Apply Algorithm 1 to data set A with initial center-lines p̂0, p̂1, p̂2

17
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3.3 The algorithm for solving several crop rows detecting prob-1

lem2

Based on given data set A, a satisfactory approximation of k ≥ 2 globally optimal crop3

rows should be determined. If k = 2, Algorithm 2 can be used, and if k = 3, Algorithm 34

can be used. Generally, for k ≥ 2, a satisfactory approximation of k globally optimal5

crop rows can be obtained by using Algorithm 4. In the construction of Algorithm 4,6

Algorithm 2 and Algorithm 3 were used several times.7

Algorithm 4 (approximate globally optimal k-partition)

1. Let A0 = {Ti = (xi, yi) : i = 1, . . . , m}; k ≥ 2; n = k; cnt = 0; Π = ∅; Π̂ = ∅;
2. while n > 3 do
3. for j = 0 to j < 2cnt do
4. For data set Aj determine the best TLS line pj; Add pj to Π;
5. By using line pj divide the set Aj into two disjoint subsets B2j, B2j+1;
6. end for
7. if n mod 2 ̸= 0 then
8. Add Π to Π̂
9. end if

10. Set Π = ∅; n = ⌊n/2⌋; cnt = cnt + 1;
11. for j = 0 to j < 2cnt do
12. Aj = Bj; Bj = ∅;
13. end for
14. end while
15. for j = 0 to j < 2cnt do
16. if n == 2 then
17. Apply steps 2-6 of Algorithm 2 to data set Aj; Add obtained p1, p2 to Π̂;
18. end if
19. if n == 3 then
20. Apply steps 2-7 of Algorithm 3 to data set Aj; Add obtained p0, p1, p2 to Π̂;
21. end if
22. end for
23. Apply Algorithm 1 to data set A0 with the set of initial center-lines Π̂;

8

4 Numerical experiments9

The proposed algorithms for crop rows detection will be compared to each other and also10

to the HTA algorithm.11

Let P = {p1, . . . , pk} be the set of original lines and let P ⋆ = {p⋆
1, . . . , p⋆

k} be the set12

of reconstructed lines. The quality of reconstruction will be measured by using Hausdorff13
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distance between the sets P and P ⋆
1

d̂H := dH(P, P ⋆) = max{max
r

min
s

dl(pr, p⋆
s), max

s
min

r
dl(pr, p⋆

s)}, r, s ∈ {1, . . . , k}. (12)2

Thereby, the distance dl between two lines3

p1 : a1x + b1y − c1 = 0, p2 : a2x + b2y − c2 = 0,4

can be defined in the following ways.5

(i) Angle distance dA(p1, p2) is according to Cupec et al. (2009) defined by6

dA(p1, p2) =

1 − |n⃗1 · n⃗2|, if |n⃗1 · n⃗2| < 1,
|c1−(n⃗1·n⃗2)c2|

1+|c1−(n⃗1·n⃗2)c2| , if |n⃗1 · n⃗2| = 1,
n⃗1 = a1⃗i + b1j⃗,

n⃗2 = a2⃗i + b2j⃗.
(13)7

(ii) Integral distance dI(p1, p2) represents the area between the lines p1, p2 in the data8

area [xmin, xmax] × [ymin, ymax]9

dI(p1, p2) =
ymax∫

ymin

|x2(y) − x1(y)|dy, (14)10

where x1(y) = 1
a1

(c1 − b1y), x2(y) = 1
a2

(c2 − b2y). It can be shown that there holds11

dI(p1, p2) = (ymax −ymin)
∣∣∣α − β2

2 (ymax + ymin)
∣∣∣ , α = c1

a1
− c2

a2
, β = b1

a1
− b2

a2
. (15)12

Example 3. For pairs of lines in Fig. 3, both their angle (dA) and integral (dI) distances13

are shown in Table 1.14
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Figure 3: Angle and integral distances between lines
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(Fig. 3a) (Fig. 3b) (Fig. 3c) (Fig. 3d)
dA dI dA dI dA dI dA dI

dl(p1, p2) .01116 2.43 .00137 0.33 .0002 0.82 .00013 0.76
dl(p1, p3) .00001 2.57 .00199 1.71 .0009 3.02 .00009 2.67
dl(p2, p3) .01035 0.91 .00006 1.81 .0002 2.20 0 1.91

Table 1: Comparison of angle and integral distances between lines

As can be seen from the above example, unlike the integral distance, the angle distance1

does not recognize the distance between almost parallel lines well enough. For that reason2

we will use the integral distance (15) in Hausdorff distance (12) for the distance between3

two lines dl(pr, p⋆
s).4

The proposed algorithms for crop rows detection, Algorithm 2, Algorithm 3 and IMLD5

will be compared with HTA on synthetic data, which are constructed at the beginning of6

Section 3. Let us first choose the vanishing point B ∈ [0, 1] × [2, 10] and k lines which7

pass through the vanishing point B and intersect the interval [0, 1] in k equidistantly8

distributed points 0 < ν1 < ν2 < · · · < νk < 1, where νj+1 − νj = δ < 1
k−1 . For example,9

the point ν1 can be chosen in subinterval [0, 1 − (k − 1)δ], and other points are then10

νj = ν1 + (j − 1)δ, j = 2, . . . , k. After that, similarly to Subsection 2.1, using the line11

pj : ajx + bjy − cj = 0, a2
j + b2

j = 1 passing through the point {B, νj}, the set12

Aj = {(ξ(j)
i , η

(j)
i )+ ϵ

(j)
i (aj, bj) : ξ

(j)
i = 1

aj
(cj − bjη

(j)
i ), ϵ

(j)
i ∼ N (0, σ2), i = 1, . . . , mj}, (16)13

will be determined, where η1, . . . , ηmj
∈ [0, 2] are equidistantly spaced numbers. Data14

point set A is then15

A =
k∪

j=1
(Aj ∩ [0, 1] × [0, 2]) , |A| = m,16

and their elements will be denoted by Ti = (xi, yi), i = 1, . . . , m.17

The comparison will be carried out for “complete sowing” and for “incomplete sowing”18

in case of relatively small variance σ2 = 0.002 and also in case of 10-times greater variance19

σ2 = 0.02. By “complete sowing” we mean sowing where all the plants have sprung up,20

and by “incomplete sowing” we mean sowing where some of the plants have not sprung up.21

In our numerical experiments, complete sowing has been simulated in the way that sets22

Aj given by (16) contain 20 points, and incomplete sowing means that 5 − 25% randomly23

chosen points have been dropped from these sets.24

In each numerical experiment the Hausdorff distance (12) between the set of original25

lines and the set of detected lines obtained by applying HTA, IMLD, and Algorithm 226

(i.e. Algorithm 3) will be determined. Thereby, the distance between the lines pr and p⋆
s27

in (12) as an integral distance (14) will be determined.28

The efficiency of considered algorithms will be measured by the used CPU-time.29
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4.1 Comparison for k = 2 crop rows1

The experiment of choosing and reconstructing two crop rows, as described previously,2

will be carried out 100 times with m1 = m2 = 20, whereby the vanishing point B has3

been randomly chosen in [0, 1] × [2, 10].4

Complete sowing Incomplete sowing
Algorithm HTA IMLD Algorithm 2 HTA IMLD Algorithm 2

d̂H < 0.005 60 75 100 54 81 100
0.005 ≤ d̂H < 0.01 39 - - 46 - -
0.01 ≤ d̂H < 0.02 1 - - - - -
0.02 ≤ d̂H < 0.20 - 25 - - 19 -

CPU-time (sec) 1.25 .23 .04 1.25 .23 .04

Table 2: Testing the methods for solving the problem of detecting two crops with σ2 =
0.002

Table 2 shows the results of testing the observed methods for solving the problem of5

detecting two crop rows on data generated in the aforementioned way in case of relatively6

small variance σ2 = 0.002. As can be seen in Table 2, the Algorithm 2 always recognizes7

crop rows with a very high accuracy. IMLD attains the same recognition accuracy in8

about 80% cases, while in the rest 20% of cases the recognition accuracy is worse. The9

HTA attains the same high recognition accuracy in somewhat more than 50% cases, while10

in the rest of the cases the recognition accuracy is worse.11

Furthermore, as can be seen from Table 2, the average used CPU-time for Algorithm 212

per experiment is 0.04 sec and it is 5 times shorter than the used CPU-time for the IMLD13

and 30 times shorter than the used CPU-time for HTA.14

It is interesting to notice that in case of two crop rows detection there are no significant15

differences in the application in all of the observed methods with complete and incomplete16

sowing.17

Complete sowing Incomplete sowing
Algorithm HTA IMLD Algorithm 2 HTA IMLD Algorithm 2

d̂H < 0.05 31 84 99 30 69 98
0.05 < d̂H ≤ 0.1 12 3 1 14 4 2
0.1 < d̂H ≤ 0.2 9 12 - 17 27 -
0.2 < d̂H ≤ 0.5 48 1 - 39 - -

CPU-time (sec) 1.25 .24 .04 1.24 .23 .04

Table 3: Testing of the methods for solving the problem of detecting two crop rows with
σ2 = 0.02
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(d) Algorithm 2
(d̂H = 0.01)

Figure 4: An example of a numerical test of methods for solving the problem of detecting two
crop rows for data with variance σ2 = 0.02 that simulate complete sowing
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Figure 5: An example of a numerical test of methods for solving the problem of detecting two
crop rows for data with variance σ2 = 0.02 that simulate incomplete sowing

Also, on the basis of data generated in the previously described way, in case of 10-times1

greater variance σ2 = 0.02, Algorithm 2 has attained good performance: high accuracy2

(see Table 3 and Fig. 4d and Fig. 5d) and very short used CPU-time (see Table 3).3

IMLD attains the same recognition accuracy in 70% to 85% cases (as in Fig. 4c),4

while in other cases the recognition accuracy is worse (see Table 3). One such experiment5

with complete sowing and good recognition is shown in Fig. 4c, and one experiment with6

incomplete sowing and bad recognition is shown in Fig. 5c.7

HTA attains the same high recognition accuracy only in 30% cases, while in other8

cases the recognition accuracy is worse (see Table 3). One such experiment with complete9

sowing and bad recognition is shown in Fig. 4b, and one experiment with incomplete10

sowing and bad recognition is shown in Fig. 5b.11
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Furthermore, as can be seen from Table 3, in case of relatively high variance σ2 = 0.02,1

the used CPU-time for all methods has not changed.2

4.2 Comparison for k = 3 crop rows3

The experiment of choosing and reconstructing three crop rows in the previously described4

way will be carried out 100 times with m1 = m2 = m3 = 20, whereby the vanishing point5

B is randomly chosen in [0, 1] × [2, 10].6

Table 4 shows the results of testing the observed methods for solving the problem of7

detecting three crop rows on the basis of data generated in the previously mentioned way8

in case of relatively small variance σ2 = 0.002. It can be seen that Algorithm 3 as well9

as HTA always recognizes crop rows with a very high accuracy. IMLD attains the same10

recognition accuracy in 80% cases by complete sowing and in 60% cases by incomplete11

sowing, while in other cases the recognition accuracy is worse.12

Complete sowing Incomplete sowing
Algorithm HTA IMLD Algorithm 3 HTA IMLD Algorithm 3

d̂H < 0.05 100 79 100 100 63 100
0.05 < d̂H ≤ 0.1 - 6 - - 5 -
0.1 < d̂H ≤ 0.15 - 13 - - 16 -
0.15 < d̂H ≤ 0.20 - 2 - - 16 -

CPU-time (sec) 1.25 .45 .37 1.25 .44 .36

Table 4: Testing the methods for solving the problem of detecting three crop rows with
σ2 = 0.002
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Figure 6: An example of a numerical test of methods for solving the three crop rows detection
problem for data with variance σ2 = 0.02 that simulate complete sowing
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Furthermore, as can be seen from Table 4, the CPU-time for IMLD and Algorithm 31

is very acceptable, while the used CPU-time for HTA is 3 − 4 times longer.2

Again, in the case of recognizing three crop rows, there are no significant differences3

in the application of all observed methods with complete and incomplete sowing.4

Complete sowing Incomplete sowing
Algorithm HTA IMLD Algorithm 3 HTA IMLD Algorithm 3

d̂H < 0.05 18 74 100 8 67 98
0.05 < d̂H ≤ 0.1 5 2 - 5 3 2
0.1 < d̂H ≤ 0.15 2 10 - 6 11 -
0.15 < d̂H ≤ 0.20 6 14 - 4 19 -

CPU-time (sec) 1.25 .46 .36 1.25 .45 .36

Table 5: Testing the methods for solving the problem of detecting three crop rows with
σ2 = 0.02

Also, on the basis of data generated in the previously mentioned way, in case of 10-5

times greater variance σ2 = 0.02, Algorithm 3 has attained good performances: the high6

recognition accuracy (see Table 5 and Fig. 6d and Fig. 7d) and very short used CPU-time7

(see Table 5).8

IMLD attains the same recognition accuracy in about 70% cases (as in Fig. 6c), while9

in other cases the recognition accuracy is worse (see Table 5). One such experiment10

with complete sowing and good recognition is shown in Fig. 6c, and one experiment with11

incomplete sowing and bad recognition is shown in Fig. 7c.12
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Figure 7: An example of a numerical test of methods for solving the problem of detecting three
crop rows for data with variance σ2 = 0.02 that simulate incomplete sowing

HTA attains the same recognition accuracy only in a small number of cases, while in13

most experiments the recognition accuracy is worse (see Table 5). Also, a large number14
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of bad cases has not even been registered in Table 5. One such experiment with complete1

sowing and bad recognition is shown in Fig. 6b, and one experiment with incomplete2

sowing and bad recognition is shown in Fig. 7b.3

Furthermore, in case of relatively high variance σ2 = 0.02, the used CPU-time for all4

methods has not changed, as can be seen from Table 5.5

5 Conclusion6

The proposed method for crop rows detection described in Algorithm 2 and Algorithm 37

recognizes crop rows with a very high accuracy. Thereby, the used CPU-time is very8

acceptable from the application point of view. For this reason, we suppose that the9

proposed method would be very acceptable in a direct application. However, in that case10

the used CPU-time could be even shorter such that Algorithm 2, i.e. Algorithm 3, is11

performed only at the beginning of the working process. After that, it is sufficient to12

perform corrections by k-means Algorithm 1 successively.13

The generalization to several crop rows is also given in the paper, but was not imple-14

mented. Also, this method could be extended for the case when the number of lines is15

not known in advance. In that case, some of the known indexes should be adjusted (see16

e.g. Vendramin et al. (2009)).17
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